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1 Generalities

Consider a vector v ∈ R3 and the skew-symmetric 3× 3 matrix S built with its
components,

v =

 vx
vy
vz

 ⇒ S(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

 ,

so that the following properties hold for vector cross products in R3:

v1,v2 ∈ R3 ⇒ v1 × v2 = S(v1)v2 = −S(v2)v1.

The following properties hold for the singular matrix S (detS = 0, always):

1. ST(v) = −S(v), by definition of skew-symmetry;

2. S(−v) = −S(v) = ST(v);

3. S(v)v (= v × v)= 0, by definition of cross product;

4. S2(v) =

 −
(
v2y + v2z

)
vxvy vxvz

vyvx −
(
v2x + v2z

)
vyvz

vzvx vzvy −
(
v2x + v2y

)
 = v vT−I ‖v‖2, which

is a symmetric matrix;

5. rank S(v) = 2 if and only if ‖v‖ 6= 0;

6. the pseudoinverse is S#(v) = − 1

‖v‖2
S(v) =

1

‖v‖2
ST(v), satisfying all the

four defining relations:

S S#S = S, S#S S# = S#,
(
S S#

)T
= S S#,

(
S#S

)T
= S#S;

7. the null space is N (S(v)) = span
{
v
}

;
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8. the projection matrix in the null space is

P (v) = I − S#(v)S(v) = I +
1

‖v‖2
S2(v)

= I +
1

‖v‖2
(
v vT − I ‖v‖2

)
=
v vT

‖v‖2
;

9. P (v)v = v;

10. powers of S are expressed recursively in terms of S and S2 as

S2k+1(v) = (−1)k‖v‖2kS(v), S2(k+1)(v) = (−1)k‖v‖2kS2(v),

for k = 1, 2, . . . .

2 Use for contact localization

The core equations (9) to (12) of present concern in our ICRA 2023 paper
are revisited here, together with some further development. The purpose is to
show that the final result (11)–(12) follows both from an analytic as well as a
geometric argument.

Assume that we have detected a collision between a serial manipulator with n
links at a configuration q and the external environment (including a human).
Moreover, using the properties of the momentum-based residual vector r ∈ Rn,
we have also isolated the link i that is in collision, with i ∈ {1, . . . , n}. Therefore,
one has

rT =
(
∗ . . . ∗ ri 0 . . . 0

)
, ri 6= 0, (1)

with rj = 0 for j = i + 1, . . . , n and ‘don’t care’ values (∗) for the components
of r having index j < i.

The mapping from an external force f i ∈ R3, acting at the origin of the known
kinematic frame RFi attached to link i, and an external momentum mi ∈ R3,
applied to the link i as a whole, to the resulting joint torque τ ∈ Rn is given by

τ = JT
i (q)

(
f i

mi

)
= JT

Li(q)f i + JT
Ai(q)mi, (2)

where

J i(q) =

(
JLi(q)
JAi(q)

)
is the 6 × n geometric Jacobian matrix for link i, which is known from the
(partial) kinematics of the robot arm. For a serial manipulator, the last n − i
columns of J i are zero. Thus, the last n − i components of τ will be zero as
well. In dynamic conditions, the residual vector r is a first-order filtered version
(or, a ‘proxy’) of τ , and this motivates the structure in (1). Therefore, under
a full rank condition for the geometric Jacobian J i, one can replace τ with r
in (2) and solve for (

f i

mi

)
= JT

i

#
(q) r, (3)
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which is eq. (9) in the ICRA 2023 paper. Out of singularities (or rank deficien-
cies), if the index of the colliding link is i = 6, the value obtained from (3) is

unique (being JT
i

#
= J−T

i ); when i > 6, we have JT
i

#
=
(
J iJ

T
i

)−1

J i, and the

solution minimizes the norm of the (possibly zero) error

e = τ − JT
i (q)

(
f i

mi

)
for the overdetermined system (2) (and among the solutions yielding the mini-
mum error in norm, the one having minimum norm); finally, when i < 6 (and
the rank of J i is thus equal to i), there are infinite solutions to the underde-
termined system (2) and the one in (3) has a minimum norm. Note that in
this case, denoting by J̄ i is the 6× i submatrix with the first i < 6 (full rank)
columns of J i, the pseudoinverse solution (3) can be written more explicitly as(

f i

mi

)
= J̄ i(q)

(
J̄ i

T
(q) J̄ i(q)

)−1

r̄[i],

where r̄[i] ∈ Ri the vector made by the first i components of r. Indeed, we have
r̄[i] 6= 0 —see eq. (1).

For link i, consider the standard transformation of the applied forces and mo-
ments in two different reference frames, RFi and RFci, attached at different
points of the rigid body (and with the same relative orientation). The second
frame is placed at the point Pci on the link i where the collision with an (un-
known) external force fext ∈ R3 occur, while an (unknown) external moment
mext ∈ R3 is applied to the entire body. The point Pci is localized by the
(unknown) position vector pci ∈ R3 from the origin of frame RFi. Thus, we
have (

f i

mi

)
=

(
I O

S(pci) I

)(
fext

mext

)
, (4)

where the left-hand side is computed by (3) and the right-hand side contains
all unknown quantities. In such a transformation, the force remains the same
while the mapping between the moments will include also the additional term

pci × fext = S(pci)fext.

Assume now that only an external force fext ∈ R3 is involved in the collision at
point Pci, while the external momentum is mext = 0. Then, eq. (4) simplifies
to (

f i

mi

)
=

(
I

S(pci)

)
fext, (5)

which is eq. (10) in the paper. Indeed, the top part implies that fext = f i,
which has been already computed via (3). Knowing thus fext, the bottom part
can be rewritten as

S(pci)fext = −S(fext)pci = ST(fext)pci = mi. (6)

This is a linear system of three equations in the three unknown components of
vector pci, with a coefficient matrix that is skew-symmetric (having rank 2).
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Thus, there are an infinite number of solutions, that can all be written in terms
of a particular solution (e.g., the one with minimum norm) and a term in the
null space of ST (which is also the null space of S).

Therefore, we solve eq. (6) as

pci = −S#(fext)mi +
(
I −

(
−S#(fext)

)
(−S(fext)

)
p0, (7)

where p0 ∈ R3 is a generic position vector from the origin of frame RFi. Sub-
stituting in (7) the expression of the pseudoinverse of S (and simplifying signs),
we obtain

pci = S(fext)
mi

‖fext‖
2 +

fext f
T
ext

‖fext‖
2 p0. (8)

The first term in (8) is the position vector of minimum norm that generates,
together with fext, the moment mi at the origin of the reference frame RFi:

pc,d = S(fext)
mi

‖fext‖
2 =

1

‖fext‖
· fext ×mi

‖fext‖
,

which is the actual expression of the solution value in eq. (11) of the paper.
Vector pc,d is orthogonal to both fext and mi and its norm is the minimum
distance between the line of action of fext and the origin of RFi. The point
Pcd with position pc,d is typically not on the surface of the link, so it cannot
coincide with Pci. Nonetheless, it belongs to the line of action of the force fext.

On the other hand, the second term is a position vector that is always aligned
with the line of action of fext (and normal to pc,d. It can be rewritten as

pc,n(λ) = λ
fext

‖fext‖
, with λ =

1

‖fext‖
· fT

ext p0 ∈ R,

which is the second term in eq. (12) of the paper. By varying λ ∈ R, namely the
projection of the vector p0 along the line of action of fext, we find in general two
points of intercept with the surface of the link, one for some value λ = λpush,
corresponding to fext pushing against the link, and the other for a different
value λ = λpull, corresponding to fext pulling the link. Depending on the
context, one can select one or the other solution. For instance, for the more
common case of pushing, the estimated position of the collision point Pci is

p(λpush) = pc,d + λpush
fext

‖fext‖
,

which is eq. (12) in the paper.
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